Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Front Neurosci ; 18: 1367932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660227

RESUMO

Steady-state visual evoked potential brain-computer interfaces (SSVEP-BCI) have attracted significant attention due to their ease of deployment and high performance in terms of information transfer rate (ITR) and accuracy, making them a promising candidate for integration with consumer electronics devices. However, as SSVEP characteristics are directly associated with visual stimulus attributes, the influence of stereoscopic vision on SSVEP as a critical visual attribute has yet to be fully explored. Meanwhile, the promising combination of virtual reality (VR) devices and BCI applications is hampered by the significant disparity between VR environments and traditional 2D displays. This is not only due to the fact that screen-based SSVEP generally operates under static, stable conditions with simple and unvaried visual stimuli but also because conventional luminance-modulated stimuli can quickly induce visual fatigue. This study attempts to address these research gaps by designing SSVEP paradigms with stereo-related attributes and conducting a comparative analysis with the traditional 2D planar paradigm under the same VR environment. This study proposed two new paradigms: the 3D paradigm and the 3D-Blink paradigm. The 3D paradigm induces SSVEP by modulating the luminance of spherical targets, while the 3D-Blink paradigm employs modulation of the spheres' opacity instead. The results of offline 4-object selection experiments showed that the accuracy of 3D and 2D paradigm was 85.67 and 86.17% with canonical correlation analysis (CCA) and 86.17 and 91.73% with filter bank canonical correlation analysis (FBCCA), which is consistent with the reduction in the signal-to-noise ratio (SNR) of SSVEP harmonics for the 3D paradigm observed in the frequency-domain analysis. The 3D-Blink paradigm achieved 75.00% of detection accuracy and 27.02 bits/min of ITR with 0.8 seconds of stimulus time and task-related component analysis (TRCA) algorithm, demonstrating its effectiveness. These findings demonstrate that the 3D and 3D-Blink paradigms supported by VR can achieve improved user comfort and satisfactory performance, while further algorithmic optimization and feature analysis are required for the stereo-related paradigms. In conclusion, this study contributes to a deeper understanding of the impact of binocular stereoscopic vision mechanisms on SSVEP paradigms and promotes the application of SSVEP-BCI in diverse VR environments.

2.
BMC Pediatr ; 24(1): 234, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566022

RESUMO

BACKGROUND: The rebound of influenza A (H1N1) infection in post-COVID-19 era recently attracted enormous attention due the rapidly increased number of pediatric hospitalizations and the changed characteristics compared to classical H1N1 infection in pre-COVID-19 era. This study aimed to evaluate the clinical characteristics and severity of children hospitalized with H1N1 infection during post-COVID-19 period, and to construct a novel prediction model for severe H1N1 infection. METHODS: A total of 757 pediatric H1N1 inpatients from nine tertiary public hospitals in Yunnan and Shanghai, China, were retrospectively included, of which 431 patients diagnosed between February 2023 and July 2023 were divided into post-COVID-19 group, while the remaining 326 patients diagnosed between November 2018 and April 2019 were divided into pre-COVID-19 group. A 1:1 propensity-score matching (PSM) was adopted to balance demographic differences between pre- and post-COVID-19 groups, and then compared the severity across these two groups based on clinical and laboratory indicators. Additionally, a subgroup analysis in the original post-COVID-19 group (without PSM) was performed to investigate the independent risk factors for severe H1N1 infection in post-COIVD-19 era. Specifically, Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to select candidate predictors, and logistic regression was used to further identify independent risk factors, thus establishing a prediction model. Receiver operating characteristic (ROC) curve and calibration curve were utilized to assess discriminative capability and accuracy of the model, while decision curve analysis (DCA) was used to determine the clinical usefulness of the model. RESULTS: After PSM, the post-COVID-19 group showed longer fever duration, higher fever peak, more frequent cough and seizures, as well as higher levels of C-reactive protein (CRP), interleukin 6 (IL-6), IL-10, creatine kinase-MB (CK-MB) and fibrinogen, higher mechanical ventilation rate, longer length of hospital stay (LOS), as well as higher proportion of severe H1N1 infection (all P < 0.05), compared to the pre-COVID-19 group. Moreover, age, BMI, fever duration, leucocyte count, lymphocyte proportion, proportion of CD3+ T cells, tumor necrosis factor α (TNF-α), and IL-10 were confirmed to be independently associated with severe H1N1 infection in post-COVID-19 era. A prediction model integrating these above eight variables was established, and this model had good discrimination, accuracy, and clinical practicability. CONCLUSIONS: Pediatric H1N1 infection during post-COVID-19 era showed a higher overall disease severity than the classical H1N1 infection in pre-COVID-19 period. Meanwhile, cough and seizures were more prominent in children with H1N1 infection during post-COVID-19 era. Clinicians should be aware of these changes in such patients in clinical work. Furthermore, a simple and practical prediction model was constructed and internally validated here, which showed a good performance for predicting severe H1N1 infection in post-COVID-19 era.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Criança , Interleucina-10 , Influenza Humana/complicações , Influenza Humana/diagnóstico , Estudos Retrospectivos , China/epidemiologia , Gravidade do Paciente , Convulsões , Tosse
3.
Int J Biol Macromol ; 266(Pt 2): 131357, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580010

RESUMO

The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.

4.
Biofabrication ; 16(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569491

RESUMO

Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.


Assuntos
Bioimpressão , Impressão Tridimensional , Traumatismos da Medula Espinal , Tecidos Suporte , Traumatismos da Medula Espinal/terapia , Bioimpressão/métodos , Humanos , Animais , Tecidos Suporte/química , Engenharia Tecidual , Materiais Biocompatíveis/química
5.
Plant Biotechnol J ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587024

RESUMO

The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.

6.
Insights Imaging ; 15(1): 97, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536542

RESUMO

PURPOSE: To explore the predictive potential of intratumoral and multiregion peritumoral radiomics features extracted from multiparametric MRI for predicting pathological differentiation in hepatocellular carcinoma (HCC) patients. METHODS: A total of 265 patients with 277 HCCs (training cohort n = 193, validation cohort n = 84) who underwent preoperative MRI were retrospectively analyzed. The risk factors identified through stepwise regression analysis were utilized to construct a clinical model. Radiomics models based on MRI (arterial phase, portal venous phase, delayed phase) across various regions (entire tumor, Peri_5mm, Peri_10mm, Peri_20mm) were developed using the LASSO approach. The features obtained from the intratumoral region and the optimal peritumoral region were combined to design the IntraPeri fusion model. Model performance was assessed using the area under the curve (AUC). RESULTS: Larger size, non-smooth margins, and mosaic architecture were risk factors for poorly differentiated HCC (pHCC). The clinical model achieved AUCs of 0.77 and 0.73 in the training and validation cohorts, respectively, while the intratumoral model achieved corresponding AUC values of 0.92 and 0.82. The Peri_10mm model demonstrated superior performance to the Peri_5mm and Peri_20mm models, with AUC values of 0.87 vs. 0.84 vs. 0.73 in the training cohort and 0.80 vs. 0.77 vs. 0.68 in the validation cohort, respectively. The IntraPeri model exhibited remarkable AUC values of 0.95 and 0.86 in predicting pHCC in the training and validation cohorts, respectively. CONCLUSIONS: Our study highlights the potential of a multiparametric MRI-based radiomic model that integrates intratumoral and peritumoral features as a tool for predicting HCC differentiation. CRITICAL RELEVANCE STATEMENT: Both clinical and multiparametric MRI-based radiomic models, particularly the intratumoral radiomic model, are non-invasive tools for predicting HCC differentiation. Importantly, the IntraPeri fusion model exhibited remarkable predictiveness for individualized HCC differentiation. KEY POINTS: • Both the intratumoral radiomics model and clinical features were useful for predicting HCC differentiation. • The Peri_10mm radiomics model demonstrated better diagnostic ability than other peritumoral region-based models. • The IntraPeri radiomics fusion model outperformed the other models for predicting HCC differentiation.

7.
Biomater Sci ; 12(8): 2121-2135, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38456326

RESUMO

Natural polymer-based hydrogels have been widely applied in bone tissue engineering due to their excellent biocompatibility and outstanding ability of drug encapsulation. However, they have relatively weak mechanical properties and lack bioactivity. Hence, we developed a bioactive nanoparticle composite hydrogel by incorporating LAPONITE®, which is an osteo-inductive inorganic nanoparticle. The incorporation of the nanoparticle significantly enhanced its mechanical properties. In vitro evaluation indicated that the nanocomposite hydrogel could exhibit good biocompatibility. Besides, the nanocomposite hydrogel was proved to have excellent osteogenic ability with up-regulated expression of osteogenic markers such as type I collagen (COL-I), runt-related transcription factor-2 (Runx-2) and osteocalcin (OCN). Furthermore, the in vivo study confirmed that the composite nanocomposite hydrogel could significantly promote new bone formation, providing a prospective strategy for bone tissue regeneration.


Assuntos
Fibroínas , Nanopartículas , Hidrogéis , Nanogéis , Regeneração Óssea , Engenharia Tecidual , Seda
8.
ACS Nano ; 18(12): 8777-8797, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488479

RESUMO

Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.


Assuntos
Vesículas Extracelulares , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polpa Dentária , Diferenciação Celular , Regeneração Óssea , Osteogênese , Células-Tronco , Ácido Hialurônico/farmacologia , Vesículas Extracelulares/metabolismo
9.
Front Cell Infect Microbiol ; 14: 1347173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500503

RESUMO

Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.


Assuntos
Bacteriófago P2 , Bacteriófagos , Animais , Cães , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteus mirabilis , Biofilmes , Bacteriófagos/genética
10.
Br J Radiol ; 97(1155): 668-679, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38303541

RESUMO

OBJECTIVES: To establish and verify a prognostic nomogram model for selecting in unresectable hepatocellular carcinoma (uHCC) treated by transarterial chemoembolization plus lenvatinib (TACE-L) with or without PD-1 inhibitor. METHODS: Data of 241 uHCC patients who underwent TACE-L (n = 128) and TACE-L plus PD-1 inhibitor (TACE-L-P, n = 113) were retrospectively reviewed. The differences in tumour responses, progression-free survival (PFS), overall survival (OS), and adverse events (AEs) between two groups were compared, and a prognostic nomogram model was established based on independent clinical-radiologic factors and confirmed by Cox regression analysis for predicting PFS and OS. The treatment selection for uHCC patients was stratified by the nomogram score. RESULTS: Compared to TACE-L, TACE-L-P presented prolonged PFS (14.0 vs. 9.0 months, P < .001), longer OS (24.0 vs. 15.0 months, P < .001), and a better overall objective response rate (54.0% vs. 32.8%, P = .001). There was no significant difference between the rate of AEs in the TACE-L-P and the TACE-L (56.64% vs. 46.09%, P = .102) and the rate of grade ≥ 3 AEs (11.50% vs. 9.38%, P = .588), respectively. The nomogram model presented good discrimination, with a C-index of 0.790 for predicting PFS and 0.749 for predicting OS. Patients who underwent TACE-L and obtained a nomogram score >9 demonstrated improved 2-year PFS when transferred to TACE-L-P, and those with a nomogram ≤25 had better 2-year OS when transferred to TACE-L-P. CONCLUSIONS: TACE-L-P showed significant improvements in efficiency and safety for uHCC patients compared with TACE-L. The nomogram was useful for stratifying treatment decisions and selecting a suitable population for uHCC patients. ADVANCES IN KNOWLEDGE: Prognostic nomogram model is of great value in predicting individualized survival benefits for uHCC patients after TACE-L or/and TACE-L-P. And the nomogram was helpful for selection between TACE-L-P and TACE-L among uHCC patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Prognóstico , Nomogramas , Inibidores de Checkpoint Imunológico , Estudos Retrospectivos
11.
Sci Rep ; 14(1): 2745, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302507

RESUMO

The objective of this study was to analyze the antimicrobial resistance (AMR) characteristics produced by antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and gene cassettes in Escherichia coli isolated from the feces of captive black bears. Antimicrobial susceptibility testing was performed by using the disk diffusion method, and both MGEs and integron gene cassettes were detected by polymerase chain reaction. Our results showed that 43.7% (62/142) of the isolates were multidrug resistant strains and 97.9% (139/142) of the isolates were resistant to at least one antibiotic. The highest AMR phenotype was observed for tetracycline (79.6%, 113/142), followed by ampicillin (50.0%, 71/142), trimethoprim-sulfamethoxazole (43.7%, 62/142) and cefotaxime (35.9%, 51/142). However, all isolates were susceptible to tobramycin. tetA had the highest occurrence in 6 ARGs in 142 E. coli isolates (76.8%, 109/142). Ten mobile genetic elements were observed and IS26 was dominant (88.0%, 125/142). ISECP1 was positively associated with five ß-lactam antibiotics. ISCR3/14, IS1133 and intI3 were not detected. Seventy-five E. coli isolates (65 intI1-positive isolates, 2 intI2-positive isolates and 8 intI1 + intI2-positive isolates) carried integrons. Five gene cassettes (dfrA1, aadA2, dfrA17-aadA5, aadA2-dfrA12 and dfrA1-aadA1) were identified in the intI1-positive isolates and 2 gene cassettes (dfrA1-catB2-sat2-aadA1 and dfrA1-catB2-sat1-aadA1) were observed in the intI2-positive isolates. Monitoring of ARGs, MGEs and gene cassettes is important to understand the prevalence of AMR, which may help to introduce measures to prevent and control of AMR in E. coli for captive black bears.


Assuntos
Escherichia coli , Ursidae , Animais , Antibacterianos/farmacologia , Ursidae/genética , Farmacorresistência Bacteriana/genética , Integrons/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-38306950

RESUMO

The specific miRNA regulation triggered by enzyme-treated soybean protein in response to well-known stressors, such as the prophylactic use of the antimicrobial oxytetracycline, remains unknown. Hence, this study aimed to evaluate the regulatory changes of hepatic miRNAs induced by oxytetracycline and enzyme-treated soybean protein in largemouth bass dietary formulations. The experiment was designed with three groups: the normal control (NC), the oxytetracycline exposure treatment group (OTC), and the pre-treatment with enzyme-treated soybean protein before oxytetracycline exposure group (ETSP). miRNA sequencing was employed to characterize the differences between these groups. In conclusion, the NC group exhibited up-regulation of 13 host miRNAs and down-regulation of 1 miRNA compared to the OTC group, whereas the ETSP group showed an increasing trend of 36 host miRNAs and a decreasing trend of 13 host miRNAs compared to the OTC group. Nine miRNAs were identified as prudential targets for enzyme-treated soy protein, protecting the largemouth bass liver from oxytetracycline. Furthermore, gene ontology analysis revealed nine key miRNAs that mediate signaling pathways with significant differences. The cellular lipid metabolic process was identified as the most important biological process, and the propanoate metabolism pathway was highlighted as significant. These results will facilitate further exploration of the mechanism by which enzyme-treated soy protein alleviates the effects of oxytetracycline on largemouth bass in water environments.


Assuntos
Bass , MicroRNAs , Oxitetraciclina , Animais , Bass/genética , Proteínas de Soja/metabolismo , Proteínas de Soja/farmacologia , Oxitetraciclina/farmacologia , Oxitetraciclina/metabolismo , Fígado/metabolismo , MicroRNAs/genética
13.
Front Plant Sci ; 15: 1343928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390293

RESUMO

Root architecture is an important agronomic trait that plays an essential role in water uptake, soil compactions, nutrient recycling, plant-microbe interactions, and hormone-mediated signaling pathways. Recently, significant advancements have been made in understanding how the complex interactions of phytohormones regulate the dynamic organization of root architecture in crops. Moreover, phytohormones, particularly auxin, act as internal regulators of root development in soil, starting from the early organogenesis to the formation of root hair (RH) through diverse signaling mechanisms. However, a considerable gap remains in understanding the hormonal cross-talk during various developmental stages of roots. This review examines the dynamic aspects of phytohormone signaling, cross-talk mechanisms, and the activation of transcription factors (TFs) throughout various developmental stages of the root life cycle. Understanding these developmental processes, together with hormonal signaling and molecular engineering in crops, can improve our knowledge of root development under various environmental conditions.

14.
PLoS One ; 19(2): e0298053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416699

RESUMO

The increasing number of multi-drug resistant (MDR) bacteria in companion animals poses a threat to both pet treatment and public health. To investigate the characteristics of MDR Escherichia coli (E. coli) from dogs, we detected the antimicrobial resistance (AMR) of 135 E. coli isolates from diarrheal pet dogs by disc diffusion method (K-B method), and screened antibiotic resistance genes (ARGs), virulence-associated genes (VAGs), and population structure (phylogenetic groups and MLST) by polymerase chain reaction (PCR) for 74 MDR strains, then further analyzed the association between AMRs and ARGs or VAGs. Our results showed that 135 isolates exhibited high resistance to AMP (71.11%, 96/135), TET (62.22%, 84/135), and SXT (59.26%, 80/135). Additionally, 54.81% (74/135) of the isolates were identified as MDR E. coli. In 74 MDR strains, a total of 12 ARGs in 6 categories and 14 VAGs in 4 categories were observed, of which tetA (95.95%, 71/74) and fimC (100%, 74/74) were the most prevalent. Further analysis of associations between ARGs and AMRs or VAGs in MDR strains revealed 23 significant positive associated pairs were observed between ARGs and AMRs, while only 5 associated pairs were observed between ARGs and VAGs (3 positive associated pairs and 2 negative associated pairs). Results of population structure analysis showed that B2 and D groups were the prevalent phylogroups (90.54%, 67/74), and 74 MDR strains belonged to 42 STs (6 clonal complexes and 23 singletons), of which ST10 was the dominant lineage. Our findings indicated that MDR E. coli from pet dogs carry a high diversity of ARGs and VAGs, and were mostly belong to B2/D groups and ST10. Measures should be taken to prevent the transmission of MDR E. coli between companion animals and humans, as the fecal shedding of MDR E. coli from pet dogs may pose a threat to humans.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Cães , Humanos , Virulência/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Tipagem de Sequências Multilocus , Filogenia , Diarreia/veterinária , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
15.
Ann Med Surg (Lond) ; 86(2): 650-654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333286

RESUMO

Objective: To investigate risk factors for portal venous thrombosis (PVT) after partial splenic artery embolization (PSE) in hepatic cirrhosis patients. Methods: The authors retrospectively analyzed 151 hepatic cirrhosis patients with hypersplenism who underwent partial splenic artery embolization between January 2020 and December 2021. The patients were divided into a PVT group and a non-PVT group according to whether they had PVT after PSE. Univariate analyses were performed to select risk factors for PVT after PSE, and multivariate analysis was used to analyze variates with a value of P less than 0.1 in univariate analysis. Results: There were 151 patients enroled in the study, with 22 patients in the PVT group and 129 patients in the non-PVT group. There was no significant difference in terms of age, sex, smoking, hypertension, diabetes, Child-Pugh between two groups. White blood cell (WBC) and platelet counts after PSE were significantly higher than those before PSE in both the PVT group and non-PVT group. Univariate analysis showed that portal venous blood flow velocity, ligation of oesophageal varices and WBC after PSE were found to have a P value less than 0.1. Multivariate analysis showed that portal venous blood flow velocity was a factor associated with PVT after PSE. Conclusion: Portal venous blood flow velocity was a factor associated with PVT after PSE. Portal venous blood flow velocity should be considered before patients undergo PSE.

16.
Sci Total Environ ; 919: 170699, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325474

RESUMO

During feeding process in intensive chicken farms, the prolonged exposure of chickens to elevated level of ammonia leads to substantial economic losses within poultry farming industry. Luteolin (Lut), known as its anti-inflammatory and antioxidant properties, possesses the ability to eliminate free radicals and enhance the activities of antioxidant enzymes, thus rendering it highly esteemed in production. The objective of this study was to examine the effects of Lut on antioxidant and anti-inflammatory responses of chicken splenic lymphocytes exposed to ammonia. In order to achieve this, we have replicated a protective model involving Lut against ammonia exposure in chicken splenic lymphocytes. The findings of the study indicated that Lut mitigated the elevation of lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) induced by ammonia poisoning. Additionally, Lut demonstrated an increase in the expression of antioxidant enzymes, namely superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, Lut exhibited a protective effect on cell morphology and ultrastructure following exposure to ammonia. Moreover, Lut exhibited a reduction in the expression of heat shock proteins (HSPs) and inflammatory cytokines, which were found to be highly expressed in splenic lymphocytes after ammonia exposure. Additionally, Lut demonstrated the ability to inhibit the overexpression of pyroptosis-related genes and proteins (NLRP3 and Caspase-1) in splenic lymphocytes following ammonia exposure. Lut exerted an antioxidant effect on lymphocytes, counteracting elevated levels of oxidative stress following exposure to ammonia. Additionally, Lut had the potential to modulate the expression of HSPs, suppressed the inflammatory response subsequent to ammonia exposure, and influenced the expression of NLRP3 and Caspase-1, thereby mitigating pyroptosis induced by ammonia exposure. The exploration of this subject matter can elucidate the protective properties of Lut against NH4Cl-induced damage in chicken splenic lymphocytes, while also offer insights and experimental groundwork for the utilization of natural therapeutics in animal husbandry to prevent and treat ammonia-related conditions.


Assuntos
Antioxidantes , NF-kappa B , Animais , Antioxidantes/metabolismo , Caspase 1/metabolismo , Caspase 1/farmacologia , Piroptose , Luteolina/metabolismo , Luteolina/farmacologia , Amônia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Galinhas/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/metabolismo , Linfócitos
17.
Gels ; 10(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391419

RESUMO

The addition of aluminum particles to gel propellants can improve combustion performance. However, the agglomeration of aluminum during the combustion process can result in a series of negative effects. In this paper, the aluminum agglomeration inhibition method of gel propellant based on carbon synergistic effect is proposed. Carbon particles exhibit excellent combustion properties, and the gaseous product CO2 generated during combustion can mitigate the agglomeration of aluminum. The research demonstrates that incorporating carbon particles into aluminum-containing gel effectively reduces the incomplete combustion of aluminum particles and increases the volumetric calorific value of the gel. When the mass fraction of carbon is 5 wt%, the volume calorific value of the gel reaches the highest. Meanwhile, the rheological experiments show that the addition of carbon particles can improve the shear-thinning properties of the gel, which is beneficial to the atomization and combustion processes of the gel.

18.
Int J Biol Sci ; 20(4): 1452-1470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385075

RESUMO

A growing number of studies have revealed an association between proteasome activator complex subunit 2 (PSME2) and the progression of various forms of cancer. However, the effect of PSME2 on osteosarcoma progression is unknown. Pan-cancer analyses focused on the immunological activity and prognostic relevance of PSME2 have yet to be conducted. The Cancer Genome Atlas and Genome-Tissue Expression databases were leveraged to evaluate PSME2 expression and activity across 33 cancer types. Significant PSME2 dysregulation was noted in a wide range of cancer types and this gene was found to offer significant diagnostic and prognostic utility in most analyzed cancers. From a mechanistic perspective, PSME2 expression levels were correlated with DNA methylation, DNA repair, genomic instability, and TME scores in multiple cancer types. PSME2 was subsequently established as a pan-cancer biomarker of M1 macrophage infiltration based on a combination of bulk, single-cell, and spatial transcriptomic data and confirmatory fluorescent staining results. In osteosarcoma cells, overexpressing PSME2 significantly suppressed tumor proliferative, migratory, and invasive activity. Screening efforts also successfully identified the PSME2-activating drug irinotecan, which can synergistically promote the death of osteosarcoma cells when combined with the chemotherapeutic drug paclitaxel. As a biomarker of M1 macrophage infiltration, PSME2 expression levels may offer insight into tumor development and progression for a wide range of cancers including osteosarcoma, emphasizing its potential utility as a prognostic and therapeutic target worthy of further study.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Fenótipo , Biomarcadores Tumorais/genética , Macrófagos , Neoplasias Ósseas/genética , Complexo de Endopeptidases do Proteassoma
19.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38307355

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Assuntos
Alpinia , Antiulcerosos , Úlcera Gástrica , Camundongos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Etanol/toxicidade , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Rizoma/metabolismo , Úlcera/tratamento farmacológico , Luteolina/farmacologia , Histamina/metabolismo , Mucosa Gástrica , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo
20.
Ecotoxicol Environ Saf ; 272: 116028, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310824

RESUMO

Extensive application of lead (Pb) brought about environmental pollution and toxic reactions of organisms. Selenium (Se) has the effect of antagonizing Pb poisoning in humans and animals. However, it is still unclear how Pb causes brainstem toxicity. In the present study, we wanted to investigate whether Se can alleviate Pb toxicity in chicken brainstems by reducing apoptosis. One hundred and eighty chickens were randomly divided into four groups, namely the control group, the Se group, the Pb group, and the Se/Pb group. Morphological examination, ultrastructural observation, relative mRNA expressions of genes on heat shock proteins (HSPs); selenoproteins; inflammatory cytokines; and apoptosis-related factors were investigated. The results showed that Pb exposure led to tissue damage and apoptosis in chicken brainstems. Furthermore, an atypical expression of HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90); selenoprotein family glutathione peroxidase (GPx) 1, GPx2, GPx3, and GPx4), thioredoxin reductases (Txnrd) (Txnrd1, Txnrd2, and Txnrd3), dio selenoprotein famliy (diodothyronine deiodinases (Dio)1, Dio2, and Dio3), as well as other selenoproteins (selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein n1 (Sepn1), Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein (Sep15), and selenophosphate synthetases 2 (SPS2)); inflammatory cytokines (Interleukin 2 (IL-2), IL-4, IL-6, IL-12ß, IL-17, and Interferon-γ (IFN-γ)); and apoptosis-related genes (B-cell lymphoma-2 (Bcl-2), tumor protein 53 (p53), Bcl-2 Associated X (Bax), Cytochrome c (Cyt c), and Caspase-3) were identified. An inflammatory reaction and apoptosis were induced in chicken brainstems after exposure to Pb. Se alleviated the abnormal expression of HSPs, selenoproteins, inflammatory cytokines, and apoptosis in brainstem tissues of chickens treated with Pb. The results indicated that HSPs, selenoproteins, inflammatory, and apoptosis were involved in Se-resisted Pb poisoning. Overall, Se had resistance effect against Pb poisoning, and can be act as an antidote for Pb poisoning in animals.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Galinhas/metabolismo , Citocinas/genética , Chumbo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Proto-Oncogênicas c-bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...